3.11.35 \(\int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx\) [1035]

3.11.35.1 Optimal result
3.11.35.2 Mathematica [C] (verified)
3.11.35.3 Rubi [A] (verified)
3.11.35.4 Maple [A] (verified)
3.11.35.5 Fricas [C] (verification not implemented)
3.11.35.6 Sympy [F]
3.11.35.7 Maxima [F]
3.11.35.8 Giac [F]
3.11.35.9 Mupad [F(-1)]

3.11.35.1 Optimal result

Integrand size = 25, antiderivative size = 228 \[ \int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx=-\frac {261784 \sqrt {x} (2+3 x)}{841995 \sqrt {2+5 x+3 x^2}}+\frac {8 \sqrt {x} (57860+74313 x) \sqrt {2+5 x+3 x^2}}{280665}-\frac {4420 \sqrt {x} \left (2+5 x+3 x^2\right )^{3/2}}{6237}+\frac {532}{891} x^{3/2} \left (2+5 x+3 x^2\right )^{3/2}-\frac {10}{33} x^{5/2} \left (2+5 x+3 x^2\right )^{3/2}+\frac {261784 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{841995 \sqrt {2+5 x+3 x^2}}-\frac {13016 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{56133 \sqrt {2+5 x+3 x^2}} \]

output
532/891*x^(3/2)*(3*x^2+5*x+2)^(3/2)-10/33*x^(5/2)*(3*x^2+5*x+2)^(3/2)-4420 
/6237*(3*x^2+5*x+2)^(3/2)*x^(1/2)-261784/841995*(2+3*x)*x^(1/2)/(3*x^2+5*x 
+2)^(1/2)+261784/841995*(1+x)^(3/2)*(1/(1+x))^(1/2)*EllipticE(x^(1/2)/(1+x 
)^(1/2),1/2*I*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)-1 
3016/56133*(1+x)^(3/2)*(1/(1+x))^(1/2)*EllipticF(x^(1/2)/(1+x)^(1/2),1/2*I 
*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)+8/280665*(5786 
0+74313*x)*x^(1/2)*(3*x^2+5*x+2)^(1/2)
 
3.11.35.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 21.15 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.75 \[ \int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx=\frac {-523568-918440 x-198168 x^2+39780 x^3+947916 x^4+271350 x^5-3129840 x^6-2296350 x^7-261784 i \sqrt {2} \sqrt {1+\frac {1}{x}} \sqrt {3+\frac {2}{x}} x^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )+66544 i \sqrt {2} \sqrt {1+\frac {1}{x}} \sqrt {3+\frac {2}{x}} x^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right ),\frac {3}{2}\right )}{841995 \sqrt {x} \sqrt {2+5 x+3 x^2}} \]

input
Integrate[(2 - 5*x)*x^(5/2)*Sqrt[2 + 5*x + 3*x^2],x]
 
output
(-523568 - 918440*x - 198168*x^2 + 39780*x^3 + 947916*x^4 + 271350*x^5 - 3 
129840*x^6 - 2296350*x^7 - (261784*I)*Sqrt[2]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/ 
x]*x^(3/2)*EllipticE[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2] + (66544*I)*Sqrt[2 
]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/x]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[2/3]/Sqr 
t[x]], 3/2])/(841995*Sqrt[x]*Sqrt[2 + 5*x + 3*x^2])
 
3.11.35.3 Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.09, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {1236, 1236, 27, 1236, 25, 1231, 27, 1240, 1503, 1413, 1456}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (2-5 x) x^{5/2} \sqrt {3 x^2+5 x+2} \, dx\)

\(\Big \downarrow \) 1236

\(\displaystyle \frac {2}{33} \int x^{3/2} (133 x+25) \sqrt {3 x^2+5 x+2}dx-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 1236

\(\displaystyle \frac {2}{33} \left (\frac {2}{27} \int -\frac {3}{2} \sqrt {x} (1105 x+266) \sqrt {3 x^2+5 x+2}dx+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{33} \left (\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}-\frac {1}{9} \int \sqrt {x} (1105 x+266) \sqrt {3 x^2+5 x+2}dx\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 1236

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (-\frac {2}{21} \int -\frac {(8257 x+1105) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}dx-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (\frac {2}{21} \int \frac {(8257 x+1105) \sqrt {3 x^2+5 x+2}}{\sqrt {x}}dx-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 1231

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (\frac {2}{21} \left (\frac {2}{45} \sqrt {x} (74313 x+57860) \sqrt {3 x^2+5 x+2}-\frac {2}{45} \int \frac {32723 x+16270}{2 \sqrt {x} \sqrt {3 x^2+5 x+2}}dx\right )-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (\frac {2}{21} \left (\frac {2}{45} \sqrt {x} (74313 x+57860) \sqrt {3 x^2+5 x+2}-\frac {1}{45} \int \frac {32723 x+16270}{\sqrt {x} \sqrt {3 x^2+5 x+2}}dx\right )-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 1240

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (\frac {2}{21} \left (\frac {2}{45} \sqrt {x} (74313 x+57860) \sqrt {3 x^2+5 x+2}-\frac {2}{45} \int \frac {32723 x+16270}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}\right )-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (\frac {2}{21} \left (\frac {2}{45} \sqrt {x} (74313 x+57860) \sqrt {3 x^2+5 x+2}-\frac {2}{45} \left (16270 \int \frac {1}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+32723 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}\right )\right )-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 1413

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (\frac {2}{21} \left (\frac {2}{45} \sqrt {x} (74313 x+57860) \sqrt {3 x^2+5 x+2}-\frac {2}{45} \left (32723 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+\frac {8135 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {3 x^2+5 x+2}}\right )\right )-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

\(\Big \downarrow \) 1456

\(\displaystyle \frac {2}{33} \left (\frac {1}{9} \left (\frac {2}{21} \left (\frac {2}{45} \sqrt {x} (74313 x+57860) \sqrt {3 x^2+5 x+2}-\frac {2}{45} \left (\frac {8135 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {3 x^2+5 x+2}}+32723 \left (\frac {\sqrt {x} (3 x+2)}{3 \sqrt {3 x^2+5 x+2}}-\frac {\sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {3 x^2+5 x+2}}\right )\right )\right )-\frac {2210}{21} \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}\right )+\frac {266}{27} x^{3/2} \left (3 x^2+5 x+2\right )^{3/2}\right )-\frac {10}{33} x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}\)

input
Int[(2 - 5*x)*x^(5/2)*Sqrt[2 + 5*x + 3*x^2],x]
 
output
(-10*x^(5/2)*(2 + 5*x + 3*x^2)^(3/2))/33 + (2*((266*x^(3/2)*(2 + 5*x + 3*x 
^2)^(3/2))/27 + ((-2210*Sqrt[x]*(2 + 5*x + 3*x^2)^(3/2))/21 + (2*((2*Sqrt[ 
x]*(57860 + 74313*x)*Sqrt[2 + 5*x + 3*x^2])/45 - (2*(32723*((Sqrt[x]*(2 + 
3*x))/(3*Sqrt[2 + 5*x + 3*x^2]) - (Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)] 
*EllipticE[ArcTan[Sqrt[x]], -1/2])/(3*Sqrt[2 + 5*x + 3*x^2])) + (8135*Sqrt 
[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcTan[Sqrt[x]], -1/2])/Sqrt 
[2 + 5*x + 3*x^2]))/45))/21)/9))/33
 

3.11.35.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1231
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) 
 - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*((a + b*x + c*x^2)^p/ 
(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), x] - Simp[p/(c*e^2*(m + 2*p + 1)*(m + 
 2*p + 2))   Int[(d + e*x)^m*(a + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2* 
a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p - c*d - 2* 
c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c 
^2*d^2*(1 + 2*p) - c*e*(b*d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x 
] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && GtQ[p, 0] && (IntegerQ[p] ||  !R 
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (Integer 
Q[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1236
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 
1)/(c*(m + 2*p + 2))), x] + Simp[1/(c*(m + 2*p + 2))   Int[(d + e*x)^(m - 1 
)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m 
*(c*e*f + c*d*g - b*e*g) + e*(p + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[ 
{a, b, c, d, e, f, g, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (Intege 
rQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])
 

rule 1240
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), 
x_Symbol] :> Simp[2   Subst[Int[(f + g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, 
 Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x]
 

rule 1413
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + 
(b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; 
 FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1456
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b - q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q 
)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 
3.11.35.4 Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.58

method result size
default \(\frac {-\frac {30 x^{7}}{11}-\frac {368 x^{6}}{99}+\frac {670 x^{5}}{2079}+\frac {65812 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{841995}-\frac {130892 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{2525985}+\frac {35108 x^{4}}{31185}+\frac {884 x^{3}}{18711}+\frac {195728 x^{2}}{280665}+\frac {26032 x}{56133}}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(132\)
risch \(-\frac {2 \left (127575 x^{4}-38745 x^{3}-35550 x^{2}+32418 x -32540\right ) \sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}{280665}-\frac {\left (\frac {13016 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{168399 \sqrt {3 x^{3}+5 x^{2}+2 x}}+\frac {130892 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, \left (\frac {E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{841995 \sqrt {3 x^{3}+5 x^{2}+2 x}}\right ) \sqrt {x \left (3 x^{2}+5 x +2\right )}}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(198\)
elliptic \(\frac {\sqrt {x \left (3 x^{2}+5 x +2\right )}\, \left (-\frac {10 x^{4} \sqrt {3 x^{3}+5 x^{2}+2 x}}{11}+\frac {82 x^{3} \sqrt {3 x^{3}+5 x^{2}+2 x}}{297}+\frac {1580 x^{2} \sqrt {3 x^{3}+5 x^{2}+2 x}}{6237}-\frac {7204 x \sqrt {3 x^{3}+5 x^{2}+2 x}}{31185}+\frac {13016 \sqrt {3 x^{3}+5 x^{2}+2 x}}{56133}-\frac {13016 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{168399 \sqrt {3 x^{3}+5 x^{2}+2 x}}-\frac {130892 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, \left (\frac {E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{841995 \sqrt {3 x^{3}+5 x^{2}+2 x}}\right )}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(259\)

input
int((2-5*x)*x^(5/2)*(3*x^2+5*x+2)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/2525985/x^(1/2)/(3*x^2+5*x+2)^(1/2)*(-3444525*x^7-4694760*x^6+407025*x^5 
+98718*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4 
)^(1/2),I*2^(1/2))-65446*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*El 
lipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))+1421874*x^4+59670*x^3+880776*x^2+5857 
20*x)
 
3.11.35.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.28 \[ \int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx=-\frac {2}{280665} \, {\left (127575 \, x^{4} - 38745 \, x^{3} - 35550 \, x^{2} + 32418 \, x - 32540\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} \sqrt {x} + \frac {3928}{216513} \, \sqrt {3} {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right ) + \frac {261784}{841995} \, \sqrt {3} {\rm weierstrassZeta}\left (\frac {28}{27}, \frac {80}{729}, {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right )\right ) \]

input
integrate((2-5*x)*x^(5/2)*(3*x^2+5*x+2)^(1/2),x, algorithm="fricas")
 
output
-2/280665*(127575*x^4 - 38745*x^3 - 35550*x^2 + 32418*x - 32540)*sqrt(3*x^ 
2 + 5*x + 2)*sqrt(x) + 3928/216513*sqrt(3)*weierstrassPInverse(28/27, 80/7 
29, x + 5/9) + 261784/841995*sqrt(3)*weierstrassZeta(28/27, 80/729, weiers 
trassPInverse(28/27, 80/729, x + 5/9))
 
3.11.35.6 Sympy [F]

\[ \int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx=- \int \left (- 2 x^{\frac {5}{2}} \sqrt {3 x^{2} + 5 x + 2}\right )\, dx - \int 5 x^{\frac {7}{2}} \sqrt {3 x^{2} + 5 x + 2}\, dx \]

input
integrate((2-5*x)*x**(5/2)*(3*x**2+5*x+2)**(1/2),x)
 
output
-Integral(-2*x**(5/2)*sqrt(3*x**2 + 5*x + 2), x) - Integral(5*x**(7/2)*sqr 
t(3*x**2 + 5*x + 2), x)
 
3.11.35.7 Maxima [F]

\[ \int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx=\int { -\sqrt {3 \, x^{2} + 5 \, x + 2} {\left (5 \, x - 2\right )} x^{\frac {5}{2}} \,d x } \]

input
integrate((2-5*x)*x^(5/2)*(3*x^2+5*x+2)^(1/2),x, algorithm="maxima")
 
output
-integrate(sqrt(3*x^2 + 5*x + 2)*(5*x - 2)*x^(5/2), x)
 
3.11.35.8 Giac [F]

\[ \int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx=\int { -\sqrt {3 \, x^{2} + 5 \, x + 2} {\left (5 \, x - 2\right )} x^{\frac {5}{2}} \,d x } \]

input
integrate((2-5*x)*x^(5/2)*(3*x^2+5*x+2)^(1/2),x, algorithm="giac")
 
output
integrate(-sqrt(3*x^2 + 5*x + 2)*(5*x - 2)*x^(5/2), x)
 
3.11.35.9 Mupad [F(-1)]

Timed out. \[ \int (2-5 x) x^{5/2} \sqrt {2+5 x+3 x^2} \, dx=-\int x^{5/2}\,\left (5\,x-2\right )\,\sqrt {3\,x^2+5\,x+2} \,d x \]

input
int(-x^(5/2)*(5*x - 2)*(5*x + 3*x^2 + 2)^(1/2),x)
 
output
-int(x^(5/2)*(5*x - 2)*(5*x + 3*x^2 + 2)^(1/2), x)